Subscribe via Email

Enter your email address to subscribe to spmc news and receive notifications of new posts by email.

Join 8 other subscribers.

Author Archive:admin

Byadmin

6th BUSINESS SYSTEMS LABORATORY INTERNATIONAL SYMPOSIUM BORDERS WITHOUT BORDERS

 

BORDERS WITHOUT BORDERS:

Systemic frameworks and their applications for sustainable well-being in the global era

http://bslab-symposium.net/Pavia-2019/BSLAB-Symposium-Pavia-2019.htm

Byadmin

UKSS Conference 2018

We had a very enjoyable and rewarding Conference on 25 June. Speakers’ slides can be seen at www.ukss.org.uk.

Speakers were Alex Whitfield, CEO of Hampshire Hospitals NHS Foundation Trust:

‘System Thinking in the NHS’.

Healthcare consists of systems within systems, some are there because of the nature of medicine and care, and others are artificial creations we have imposed as a way of managing a “free at the point of use” service for our diverse population.  Alex will explore some of the current practical realities of the existing system and some of the changes which are starting to happen to allow our wonderful national health service to flourish.’

and Heather Caudle, Director of Nursing, Improvement NHS England:

‘Co-ordinating Health and Social Care: Digital Occupancy Trackers for care home beds’

In December 2017, NHS England launched a new winter framework that was designed to help health and social care staff to ensure patients do not spend any time longer than they need to in hospital. The framework had a particular emphasis on maximising the use of care homes across sustainability and transformation partnerships (STPs), including making best use of available beds in care homes so that patients who require formal care in supporting settings, do not stay in hospital longer than they need to.

Digital occupancy trackers in care homes are playing an important part in connecting health and social care providers and there is a national endeavour to ensure all NHS England regions deploy this way of working. Hospitals and local authorities having the ability to digitally monitor and better utilise access to bed occupancy in the care home sector is exciting and will be the focus of the presentation.  Utilising the experience of the NHS England London Region as a case study of how this was delivered, the presentation will demonstrate one way in which technology is helping to better integrate the health and care sectors to make it easier for patients to be transferred to, and cared for in, an environment other than their homes after a stay hospital.’

We were also joined by Igor Perko, Director-General of the World Organization for Systems & Cybernetics, and Prof. Edward Borodzicz, Professor of Risk & Crisis Management at the University of the West of England.

In addition, we had a full programme of workshops and papers around the theme of Systems Thinking in Health Provision. Proceedings will be published shortly and selected papers will appear in the International Journal of Systems & Society.

Byadmin

Italian Systems Society Conference

Associazione Italiana per la Ricerca sui Sistemi Italian Systems Society 
 
 
http://www.airs.it Email: gianfranco.minati@AIRS.it 
 Settimo Congresso Nazionale di Sistemica Seventh National Conference on Systems Science 
 
 
Call for papers 
 
 
Sistemica dell’Incompletezza e Quasi-Sistemi Systemics of Incompleteness and Quasi-Systems 
 
 
Lezione introduttiva di / Opening Lecture by  Giuseppe Longo 
 
Importance of negative results in science.  The difficult interplay between theory, modeling and simulation. 
 
 
 
Università Cattolica del Sacro Cuore  Largo Gemelli, 1 – 20123 Milano, Italy 
 
 
Giovedì 16 - Venerdì 17 Novembre 2017 Thursday 16 th  -  Friday 17th November, 2017 
 
 
 
 
In memoria del / In memory of   Professor George Klir 
2 
CHI SIAMO / ABOUT US L’Associazione Italiana per la Ricerca sui Sistemi (AIRS) http://www.airs.it é stata fondata nel 1996. L’AIRS è una rete di accademici, scienziati, ricercatori e professionisti operanti nel campo della Sistemica. Una lista parziale delle discipline rappresentate è: 
 • Architettura • Biologia • Economia • Educazione 
 • Filosofia • Fisica • Ingegneria • Matematica 
 • Medicina • Musica • Neuroscienze • Psicologia 
 The Italian Systems Society (AIRS) http://www.airs.it  was founded in the 1996. The AIRS is a network of academicians, scientists, researchers and professionals involved with Systemics.  The list of represented disciplines includes: 
 • Architecture • Biology • Economics • Education 
 • Engineering • Mathematics • Medicine • Music 
 • Neuroscience • Philosophy • Physics • Psychology 
 I congressi hanno avuto come relatori invitati i Professori Arecchi, Haken, Klir e Kauffman. Gli atti dei congressi sono stati pubblicati come: Previous AIRS conferences have had distinguished open lecturers including professors Arecchi, Haken, Klir and Kauffman and the list of published proceedings includes: 
 1. Minati, G., Abram, M. and Pessa, E., (Eds.), (2016), Towards a Post-Bertalanffy Systemics. Springer, New York.  2. Minati, G., Abram, M. and Pessa, E., (Eds.), (2012), Methods, Models, Simulations and Approaches. Towards a General Theory of Change. World Scientific, Singapore. 3. Minati, G., Abram, M. and Pessa, E., (Eds.), (2009), Processes of Emergence of Systems and Systemic Properties. Towards a General Theory of Emergence. World Scientific, Singapore.  4. Minati, G., Pessa, E., and Abram, M., (Eds.), (2006), Systemics of Emergence: Research and Applications. Springer, New York.  5. Minati, G., and Pessa, E., (Eds.) (2002), Emergence in Complex Cognitive, Social and Biological Systems. Kluwer, New York.  6. Minati, G., (Ed.), (1998), Proceedings of the First Italian Conference on Systemics. Apogeo Scientifica, Milano, Italy.  
 
 
TEMATICA DEL CONGRESSO / ISSUE OF THE CONFERENCE 
 
L’incompletezza è la libertà del divenire 
 
I modelli classici della Sistemica hanno la finalità di rappresentare completamente aspetti di fenomeni e processi, come il moto di un pendolo oppure il funzionamento di un amplificatore. Riguardano cioè i fenomeni nella loro completezza temporale e spaziale.  L’eventuale incompletezza della modellizzazione può avere natura provvisoria o pratica in quanto ancora in fase di studio e perché vi sono ragioni teoriche per cui la modellizzazione non possa essere completa. In linea di principio ciò riguarda fenomeni non complessi, affrontabili con i concetti della prima Sistemica, [1,2,3,4].  Sono stati già introdotti in letteratura concetti ed approcci riguardanti contesti e processi per i quali la modellizzazione di sistemi possa non essere concettualmente esaustiva [5]. Ricordiamo innanzi tutto i 
3 
fuzzy sets e la fuzzy logic [6,7] per i quali tuttavia l’incompletezza è solo di natura probabilistica. Si ha a che fare con una probabilità classica, calcolabile.  La probabilità certa è intesa qui come caratterizzata da possibili, significativi valori estremi, ad  esempio minimo o massimo, del divenire fenomenologico di ogni processo, ed è calcolabile, ad esempio, tramite il teorema di Bayes. Per probabilità incerta si intende una probabilità non computabile riferendosi alla non prevedibilità dei processi, per esempio, di emergenza che non possono essere completamente modellati in modo esplicito e univoco. Alcuni fenomeni, poi, sono da modellizzare prendendo in considerazione eventualmente sistemi aventi modelli molteplici che dipendono degli aspetti considerati, come elettrici e meccanici, economici e sociologici, biologici e psicologici, essendo la loro coerenza un tema sistemico di fondo [8], che inoltre riguarda la loro completezza o esaustività, come considerato dal Dynamic Usage of Models (DYSAM) [9, pp. 64–75] e dalla logical openness [10,11].  Altro invece è il caso occorrente quando l’incompletezza è intrinseca, teorica [12] e riguarda la non modellizzabilità completa intrinseca perché l’incompletezza è una caratteristica stessa del processo in studio. Consideriamo qui contesti e processi per i quali la modellizzazione tramite sistemi è incompleta, dato che interessa solo alcune proprietà, e quelli per cui è teoricamente incompleta, come nel caso dei processi di emergenza e degli approcci della Seconda Sistemica [1]. Un esempio di tale incompletezza riguarda sistemi multipli, sovrapposti e variabili nel tempo, come nel caso dei comportamenti collettivi, che mantengono coerenza a fronte di una dinamica strutturale continua, caratterizzata da correlazioni e invarianza di scala [13].  Al riguardo si utilizza il concetto generico di quasi esplicitante tale incompletezza. Il concetto di quasi è usato in vari ambiti disciplinari come i quasi-cristalli, le quasi-particelle, i quasi-electric fields, e la quasi-periodicità. Possiamo inoltre prendere in considerazione il concetto di quasi-sistemi [14]. In generale il concetto di quasità per i sistemi riguarda il loro continuo cambiamento strutturale, sempre meta-stabile, in attesa di eventi per collassare su altre configurazioni e stabilità possibili, la cui equivalenza o meno è legata al tipo di fenomeno in studio. Il concetto di quasità non interessa per il suo significato di approssimatività, ma perché indicante una incompletezza strutturalmente sufficiente per ospitare processi di emergenza e mantenere coerenza o generarne livelli nuovi, equivalenti o meno. La quasità riguarda anche approcci come quelli dei modelli a rete, in questo caso quasi-reti. Un concetto correlato è quello di sloppiness teorica nei modelli in fisica, biologia e altro [15]. L’attenzione è sul transiente, sulla molteplicità e sulla coerenza che garantiscono consistenza. Inoltre si vuole sottolineare come l’incompletezza teorica, la non-modellizzabilità completa, cioè non esaurita da singoli modelli, di processi e fenomeni vada esplorata come convivenza concettuale di approcci diversi, non tanto con lo scopo di esaurire ma di rappresentare concettualmente la dinamica strutturale del divenire, già presente alla base, per esempio, dei principi di indeterminazione e di complementarietà in fisica, pur senza far riferimento qui alla fisica quantistica. Esempi di questa dinamica caratterizzano gli ecosistemi, i comportamenti collettivi, i sistemi sociali e le polipatologie.  La disponibilità di approcci teorici efficaci è cruciale per l’economia della società corrente [16] dove si tratta di operare in contesti che devono la loro complessità, ad esempio, ad alta virtualità, cambiamenti molto rapidi e ad alta decentralizzazione, di natura reticolare. Un esempio di tematiche è dato dalle problematiche di rating, ovvero di valutazione e di utilizzo di sistemi di dati economici disomogenei in base a cui decidere riguardanti imprese, progetti, e l’attività bancaria. Si tratta di sviluppare conoscenza per l’attuale società della conoscenza (o dell’informazione che dir si voglia) o post-industriale. Molti approcci oggi usati sono ancora quelli della società industriale dove era possibile parlare, ad esempio, di pianificazione, previsione e regolazione. Il congresso ha la finalità di esplorare casi e presentare approcci in questo contesto concettuale. Concludiamo osservando come questa impostazione sia omogenea e specificante degli approcci della Sistemica post-Bertalanffy considerati nel congresso precedente [1].  
 
4 
Incompleteness as the freedom of becoming 
 
Classical models of Systemics are intended to completely represent aspects of phenomena and processes, such as the motion of a pendulum or the operation of an amplifier. They concern the phenomena in their temporal and spatial completeness. The possible incompleteness in the modelling is assumed as having a provisional or practical nature as being still under study and because there is no theoretical reason why the modelling can not be complete. In principle, this is a matter of non-complex phenomena, to be considered using the concepts of the First Systemics [1,2,3,4]. Concepts and approaches regarding contexts and processes for which systems modelling can not be conceptually exhaustive have been already introduced in the literature [5]. We recall, first of all, fuzzy sets and fuzzy logic [6,7] for which, however, completeness has merely a probabilistic nature. It is matter of classical, computable probability. Probability is understood here as certain when computable and characterized by possible, significant extremes, such as minima or maxima, of the phenomenological becoming of any process, which is free to occur within such extremes as, for example, when computed using Bayes' theorem. For uncertain probability we intend here a non-computable probability, for instance, the non-predictability of processes of emergence which can not be fully modelled in an explicit and unambiguous way. There are phenomena, then, which must be modelled by eventually resorting to systems having multiple models depending on the aspects taken into consideration, such as electrical and mechanical, economic and sociological, biological or psychological ones, their coherence being a crucial systemic theme [8] regarding also their completeness or comprehensiveness as considered by the Usage of Dynamic Models (DYSAM) [9, pp. 64-75] and Logical Openness [10,11]. It is another case when the incompleteness is intrinsic, theoretically [12] relating the intrinsic impossibility of completely modelling because the incompleteness itself is a characteristic of the process under study. We consider here contexts and processes for which modelling through the use of systems is incomplete since related to only some properties, as well as those for which such modelling is theoretically incomplete as in the case of processes of emergence and for approaches considered by the Second Systemics [1]. An example of such incompleteness regards multiple systems, overlapping and variable over time, such as the case of collective behaviours which maintain coherence despite their continuous structural dynamics, possessing both correlations and scale invariance [13]. In this regard, we consider here the generic concept of quasi explicating such incompleteness. The concept of quasi is used in different disciplines as for quasi-crystals, quasi-particles, quasi-electric fields, and quasi-periodicity.  Thus one may consider the concept of quasi-systems [14]. In general, the concept of quasiness for systems concerns their continuous structural changes which are always meta-stable, waiting for events to collapse over other configurations and possible forms of stability, whose equivalence depends on the type of phenomenon under study. The interest in the concept of quasiness is not related to its meaning of rough approximation, but because it indicates an incompleteness which is structurally sufficient to accommodate processes of emergence and sustain coherence or generate new, equivalent or nonequivalent, levels. Quasiness also concerns modelling approaches such as network models, in this case called quasinetworks. A related concept is that of theoretical sloppiness referring to models in physics, biology and other disciplines [15]. The focus is on the transient, on multiplicity and coherence which guarantee consistency. Furthermore, we consider how theoretical incompleteness, incomplete modelling, i.e., not exhausted by using individual models, of processes and phenomena should be explored as a conceptual coexistence of 
5 
different approaches not so much with the purpose of exhausting but to conceptually represent the structural dynamics of becoming, already considered, for instance, through the use of uncertainty and complementarity principles in physics, without referring here to quantum physics. Examples include ecosystems, collective behaviours, social systems, and poly-pathologies. The availability of modern, effective theoretical approaches is crucial for the economy of today's society [16] in order to deal with contexts which owe their complexity, for example, to high virtuality, very fast changes and high levels of decentralization, having a distributed, reticular nature. One example of the themes considered here is that of rating issues, that is of evaluation and use of inhomogeneous economic data, according to which one can make decisions, concerning companies, projects, and banking. It is a matter of developing knowledge for the current knowledge, information or post-industrial society.  This conference aims to explore cases and present conceptual approaches within the novel context described above. We conclude by observing how this setting is conducive to the use of post-Bertalanffy Systemics as considered in the previous Conference [1]. _________________________________________ 
 1. Minati, G., Abram, M. and Pessa, E., (Eds.), (2016), Towards a Post-Bertalanffy Systemics. Springer, New York.  2. Ulivi, L., (Ed.), (2010), Strutture di Mondo. Il Pensiero Sistemico come Specchio di una Realtà Complessa (Volume I).  Il Mulino, Bologna, Italy. 3. Ulivi, L., (Ed.), (2013), Strutture di Mondo. Il Pensiero Sistemico come Specchio di una Realtà Complessa (Volume II). Il Mulino, Bologna, Italy. 4. Ulivi, L., (Ed.), (2015), Strutture di Mondo. Il Pensiero Sistemico come Specchio di una Realtà Complessa (Volume III). Il Mulino, Bologna, Italy. 5. Bailly, F. and Longo, G., (2011), Mathematics and the Natural Sciences. The Physical Singularity of Life. Imperial College Press, London. 6. Klir, G. J. and Yuan, B., (1995), Fuzzy sets and Fuzzy Logic: Theory and applications. Prentice Hall, Englewood Cliffs, NJ. 7. Zadeh, L. A. and Klir, G. J., (Ed.), Yuan, B., (Ed.), (1996), Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh. World Scientific, Singapore. 8. Minati, G. and Pessa, E., (Eds.), (2002), Emergence in Complex Cognitive, Social and Biological Systems. Kluwer, New York.  9. Minati, G. and Pessa, E., (2006), Collective Beings. Springer, New York. 10. Minati, G., Penna, M.P. and Pessa, E., (1998), Thermodynamic and Logical Openness in General Systems, Syst. Res. Behav. Sci., 15, pp. 131-145. 11. Licata, I., (2012), “Seeing by models: Vision as adaptive epistemology”. In (Minati, G., Abram, M., Pessa, E., Eds.), Methods, Models, Simulations and Approaches towards a General Theory of Change. World Scientific: Singapore, pp. 385-400. 12. Minati, G., (2016), Knowledge to Manage the Knowledge Society: The Concept of  Theoretical Incompleteness, Systems, 4(3), pp. 1-19.  13. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M., (2010), Scale-free correlations in starling flocks,  Proceeding of the National Academy of Sciences of the United States of America, 107, pp. 11865– 11870. 14. Minati, G. and Pessa, E., (in publication), From Collective Beings to Quasi-Systems. Springer, New York.  15. Transtrum, M., K., Machta, B. B., Brown, K. S., Daniels, B. C., Myers, C. R. and Sethna, J. P., (2015), Perspective: Sloppiness and Emergent Theories in Physics, Biology, and beyond, The Journal of Chemical Physics, 143(1), pp. 010901-1-13. 16. Cartwright, E., (2014), Behavioral Economics. Routledge, New York. 
I TEMI Anche per questa edizione il congresso vuole costituirsi come un laboratorio virtuale in cui le tematiche come quelle sopra delineate e i temi sotto indicati siano trattabili e declinabili trasversalmente e tuttavia presentati in ambiti disciplinari di origine, maggiormente frequentati per qualsiasi motivo. Si invita a presentare casi non solo leggibili secondo approcci del tipo delineato sopra ma ancora mancanti di soddisfacenti sistemazioni teoriche. 
6 
La strutturazione sotto proposta è quindi indicativa e da popolare di contributi che trovano affinità che gli autori dovranno comunque indicare esplicitamente. I contributi potranno essere di varia natura come applicativi, teorici, riguardanti modelli, simulazioni, sperimentali e filosofici. 
 
1. Il concetto di incompletezza e quasità nella scienza e in filosofia. 2. Modelli di incompletezza e di quasità. 3. Incompletezza e quasità nella Sistemica della complessità post-Bertalanffy. 4. Coerenza e incompletezza nel mondo aziendale. 
5. Emergenza, quasità e incompletezza. Mantenimento, crisi e degenerazione in fenomeni di emergenza 6. Incompletezza e quasità nei sistemi sociali. 7. Ontologie sistemiche. 
TOPICS This edition of the Conference also wants to establish itself as a virtual laboratory where issues such as those outlined above, and the topics listed below, are transversely treatable and declinable, however they be considered in the disciplinary areas of their origin. We invite all to present cases regarding not only approaches of the type outlined above, but also examples for which no satisfactory theoretical frameworks are yet available. The structure of themes proposed below is therefore indicative and to be populated with contributions having whatever affinities the authors will make explicit. Contributions may be of different kinds, including applications, theoretical approaches, or regarding models, simulations, experimental or philosophical aspects. 
 
1. The concept of incompleteness and quasiness in science and philosophy. 2. Models of incompleteness and quasiness. 3. Incompleteness and quasiness in postBertalanffy Systemics complexity. 4. Coherence and incompleteness in the corporate world. 
5. Emergence, quasiness and incompleteness. Maintaining, crises and degeneration in emergence phenomena. 6. Incompleteness and quasiness in social systems. 7. Systemic ontologies. 
 
 
COMITATO SCIENTIFICO / SCIENTIFIC COMMITTEE  M. Bertolaso Università Campus Bio-Medico di Roma L. Bich CNRS, University of Bordeaux L. Biggiero Università degli Studi dell'Aquila G. Bruno ISIA Roma Design S. Di Gregorio Università della Calabria, Arcavacata, Rende A. Giuliani Istituto Superiore di Sanità, Roma I. Licata ISEM, Institute for Scientific Methodology, Palermo G. Minati (chairman), Associazione Italiana per la Ricerca sui Sistemi M. P. Penna Università di Cagliari E. Pessa  (co-chairman), Università di Pavia R. Serra Università di Modena e Reggio Emilia A. Roli Università di Bologna L. Urbani Ulivi Università Cattolica, Milano G. Vitiello Università di Salerno 
 
 
7 
COMITATO D’ORGANIZZAZIONE / ORGANIZING COMMITTEE M. Abram (atti / proceedings) mario.abram@alice.it  G. Minati gianfranco.minati@airs.it G. Conti (responsabile amministrativo / Treasurer) conti.guido@tiscali.it 
ATTI / PROCEEDINGS Gli atti saranno pubblicati da Springer. / Proceedings will be published by Springer.  
QUOTA DI PARTECIPAZIONE IN DONAZIONE / CONFERENCE FEE AS DONATION Partecipazione regolare, pagamento completo (obbligatorio per i primi autori) Regular fee, full payment (required for first authors)  170 euro  Partecipazione alla conferenza / Conference attendance  Fascicolo degli abstracts / Book of abstracts  Prenotazione degli atti pubblicati successivamente /  Copy of the Proceedings when published  
 
Partecipazione come studente / Student fee  70 euro  Partecipazione alla conferenza / Conference attendance  Fascicolo degli abstracts / Book  of abstracts 
PAGAMENTO / PAYMENT 
 Assegni intestati a / Cheques made out to:  Associazione Italiana per la Ricerca sui Sistemi  Bonifico bancario / Bank transfer:  IBAN:  IT12F0623001628000043270836. 
CONTRIBUTI / CONTRIBUTIONS Scopo della conferenza è quello di promuovere la Sistemica in Italia. Il congresso dell’Associazione Italiana per le Ricerca sui Sistemi è aperto a contributi di autori Italiani.  Contributi da autori non Italiani sono solo per invito o per accettazione. The purpose of the conference is to support Systemics in Italy.  The Conference of the Italian Systems Society is open to contributions from Italian authors.  Contributions from non-Italian authors are only by invitation or by acceptance. 
LE DATE DEL CONGRESSO / CONFERENCE DATES AND DEADLINES 30/06/2017 data limite per il ricevimento dell’abstract 31/08/2017 data limite per il ricevimento dei lavori proposti 30/09/2017 notifica di accettazione dei lavori ed istruzioni per la presentazione del testo definitivo 31/10/2017 data limite per il ricevimento del pagamento completo e dei lavori definitivi e formattati (via posta elettronica) 
 
Jun. 30, 2017 deadline for receipt of abstracts Aug. 31, 2017 deadline for receipt of submitted papers Sept. 30, 2017 notification of acceptance to author and instructions for the final text  Oct. 31, 2017 deadline for receipt of full payment and the final formatted text (via Email) 
8 
LINGUA DEL CONGRESSO / LANGUAGE OF THE CONFERENCE 
 
La lingua ufficiale per le presentazioni orali al Congresso è l’Italiano anche se potranno esservi presentazioni in Inglese (non è previsto un servizio di traduzione simultanea). Italian is the official language for oral presentations at the Conference, although lectures in English are possible (translation services will not be available). 
ISTRUZIONI AGLI AUTORI / GUIDELINES FOR AUTHORS I lavori sottoposti, scritti esclusivamente in lingua Inglese, non potranno superare 3000 parole. Una pagina a parte conterrà titolo, nome, affiliazione, indirizzo del(degli) autore(i) e un abstract di non più di 800 caratteri per essere riportato nel fascicolo degli abstracts. I lavori accettati potranno essere presentati sia in formato TeX che in formato Word. Le istruzioni fornite da Springer saranno comunicate agli autori con abstract accettato e reperibili sul sito dell’AIRS. Submitted papers, written in English only, cannot exceed 3000 words. A separate sheet is required with title, name, affiliation, address of author(s) and an abstract of no more than 800 characters for distribution during the Conference in the Book of Abstracts. Accepted papers should be presented either in TeX or Word format. The instructions provided by Springer will be sent to authors with accepted abstracts accepted and available on the AIRS web site. 
 
Uno autore può presentare non più di tre lavori di cui non più di due come primo autore. La presentazione del lavoro al congresso da parte di almeno uno degli autori è richiesta per l’eventuale inserimento negli atti dopo accettazione. La valutazione dei lavori proposti (abstract con articolo) sarà effettuata dal Comitato Scientifico sulle base dei testi completi ricevuti entro il 31 Agosto 2017.  A contributor can be author of no more than three papers of which no more than two as first author.  To be included in the refereed Conference Proceedings presentations at the Conference must be made by at least one of the authors. Selection of communications (abstract and paper) will be made by the Scientific Committee on the basis of full papers sent before August 31, 2017. 
 
I contributi vanno inviati ad uno dei seguenti indirizzi: The addresses to which to send the contributions are: 
 
Associazione Italiana per la Ricerca sui Sistemi (AIRS) Gianfranco Minati Via Pellegrino Rossi, 42B, 20161 Milano MI, Italy 
 
Email gianfranco.minati@airs.it 
 
Università di Pavia Prof. Eliano Pessa Dipartimento di Scienze del Sistema Nervoso e del Comportamento Università di Pavia, Piazza Botta, 11, 27100 Pavia PV, Italy 
 
Email eliano.pessa@unipv.it AIRS Associazione Italiana per la Ricerca sui Sistemi Italian Systems Society 
 
 
http://www.airs.it Email: gianfranco.minati@AIRS.it 
 Settimo Congresso Nazionale di Sistemica Seventh National Conference on Systems Science 
 
 
Call for papers 
 
 
Sistemica dell’Incompletezza e Quasi-Sistemi Systemics of Incompleteness and Quasi-Systems 
 
 
Lezione introduttiva di / Opening Lecture by  Giuseppe Longo 
 
Importance of negative results in science.  The difficult interplay between theory, modeling and simulation. 
 
 
 
Università Cattolica del Sacro Cuore  Largo Gemelli, 1 – 20123 Milano, Italy 
 
 
Giovedì 16 - Venerdì 17 Novembre 2017 Thursday 16 th  -  Friday 17th November, 2017 
 
 
 
 
In memoria del / In memory of   Professor George Klir 
2 
CHI SIAMO / ABOUT US L’Associazione Italiana per la Ricerca sui Sistemi (AIRS) http://www.airs.it é stata fondata nel 1996. L’AIRS è una rete di accademici, scienziati, ricercatori e professionisti operanti nel campo della Sistemica. Una lista parziale delle discipline rappresentate è: 
 • Architettura • Biologia • Economia • Educazione 
 • Filosofia • Fisica • Ingegneria • Matematica 
 • Medicina • Musica • Neuroscienze • Psicologia 
 The Italian Systems Society (AIRS) http://www.airs.it  was founded in the 1996. The AIRS is a network of academicians, scientists, researchers and professionals involved with Systemics.  The list of represented disciplines includes: 
 • Architecture • Biology • Economics • Education 
 • Engineering • Mathematics • Medicine • Music 
 • Neuroscience • Philosophy • Physics • Psychology 
 I congressi hanno avuto come relatori invitati i Professori Arecchi, Haken, Klir e Kauffman. Gli atti dei congressi sono stati pubblicati come: Previous AIRS conferences have had distinguished open lecturers including professors Arecchi, Haken, Klir and Kauffman and the list of published proceedings includes: 
 1. Minati, G., Abram, M. and Pessa, E., (Eds.), (2016), Towards a Post-Bertalanffy Systemics. Springer, New York.  2. Minati, G., Abram, M. and Pessa, E., (Eds.), (2012), Methods, Models, Simulations and Approaches. Towards a General Theory of Change. World Scientific, Singapore. 3. Minati, G., Abram, M. and Pessa, E., (Eds.), (2009), Processes of Emergence of Systems and Systemic Properties. Towards a General Theory of Emergence. World Scientific, Singapore.  4. Minati, G., Pessa, E., and Abram, M., (Eds.), (2006), Systemics of Emergence: Research and Applications. Springer, New York.  5. Minati, G., and Pessa, E., (Eds.) (2002), Emergence in Complex Cognitive, Social and Biological Systems. Kluwer, New York.  6. Minati, G., (Ed.), (1998), Proceedings of the First Italian Conference on Systemics. Apogeo Scientifica, Milano, Italy.  
 
 
TEMATICA DEL CONGRESSO / ISSUE OF THE CONFERENCE 
 
L’incompletezza è la libertà del divenire 
 
I modelli classici della Sistemica hanno la finalità di rappresentare completamente aspetti di fenomeni e processi, come il moto di un pendolo oppure il funzionamento di un amplificatore. Riguardano cioè i fenomeni nella loro completezza temporale e spaziale.  L’eventuale incompletezza della modellizzazione può avere natura provvisoria o pratica in quanto ancora in fase di studio e perché vi sono ragioni teoriche per cui la modellizzazione non possa essere completa. In linea di principio ciò riguarda fenomeni non complessi, affrontabili con i concetti della prima Sistemica, [1,2,3,4].  Sono stati già introdotti in letteratura concetti ed approcci riguardanti contesti e processi per i quali la modellizzazione di sistemi possa non essere concettualmente esaustiva [5]. Ricordiamo innanzi tutto i 
3 
fuzzy sets e la fuzzy logic [6,7] per i quali tuttavia l’incompletezza è solo di natura probabilistica. Si ha a che fare con una probabilità classica, calcolabile.  La probabilità certa è intesa qui come caratterizzata da possibili, significativi valori estremi, ad  esempio minimo o massimo, del divenire fenomenologico di ogni processo, ed è calcolabile, ad esempio, tramite il teorema di Bayes. Per probabilità incerta si intende una probabilità non computabile riferendosi alla non prevedibilità dei processi, per esempio, di emergenza che non possono essere completamente modellati in modo esplicito e univoco. Alcuni fenomeni, poi, sono da modellizzare prendendo in considerazione eventualmente sistemi aventi modelli molteplici che dipendono degli aspetti considerati, come elettrici e meccanici, economici e sociologici, biologici e psicologici, essendo la loro coerenza un tema sistemico di fondo [8], che inoltre riguarda la loro completezza o esaustività, come considerato dal Dynamic Usage of Models (DYSAM) [9, pp. 64–75] e dalla logical openness [10,11].  Altro invece è il caso occorrente quando l’incompletezza è intrinseca, teorica [12] e riguarda la non modellizzabilità completa intrinseca perché l’incompletezza è una caratteristica stessa del processo in studio. Consideriamo qui contesti e processi per i quali la modellizzazione tramite sistemi è incompleta, dato che interessa solo alcune proprietà, e quelli per cui è teoricamente incompleta, come nel caso dei processi di emergenza e degli approcci della Seconda Sistemica [1]. Un esempio di tale incompletezza riguarda sistemi multipli, sovrapposti e variabili nel tempo, come nel caso dei comportamenti collettivi, che mantengono coerenza a fronte di una dinamica strutturale continua, caratterizzata da correlazioni e invarianza di scala [13].  Al riguardo si utilizza il concetto generico di quasi esplicitante tale incompletezza. Il concetto di quasi è usato in vari ambiti disciplinari come i quasi-cristalli, le quasi-particelle, i quasi-electric fields, e la quasi-periodicità. Possiamo inoltre prendere in considerazione il concetto di quasi-sistemi [14]. In generale il concetto di quasità per i sistemi riguarda il loro continuo cambiamento strutturale, sempre meta-stabile, in attesa di eventi per collassare su altre configurazioni e stabilità possibili, la cui equivalenza o meno è legata al tipo di fenomeno in studio. Il concetto di quasità non interessa per il suo significato di approssimatività, ma perché indicante una incompletezza strutturalmente sufficiente per ospitare processi di emergenza e mantenere coerenza o generarne livelli nuovi, equivalenti o meno. La quasità riguarda anche approcci come quelli dei modelli a rete, in questo caso quasi-reti. Un concetto correlato è quello di sloppiness teorica nei modelli in fisica, biologia e altro [15]. L’attenzione è sul transiente, sulla molteplicità e sulla coerenza che garantiscono consistenza. Inoltre si vuole sottolineare come l’incompletezza teorica, la non-modellizzabilità completa, cioè non esaurita da singoli modelli, di processi e fenomeni vada esplorata come convivenza concettuale di approcci diversi, non tanto con lo scopo di esaurire ma di rappresentare concettualmente la dinamica strutturale del divenire, già presente alla base, per esempio, dei principi di indeterminazione e di complementarietà in fisica, pur senza far riferimento qui alla fisica quantistica. Esempi di questa dinamica caratterizzano gli ecosistemi, i comportamenti collettivi, i sistemi sociali e le polipatologie.  La disponibilità di approcci teorici efficaci è cruciale per l’economia della società corrente [16] dove si tratta di operare in contesti che devono la loro complessità, ad esempio, ad alta virtualità, cambiamenti molto rapidi e ad alta decentralizzazione, di natura reticolare. Un esempio di tematiche è dato dalle problematiche di rating, ovvero di valutazione e di utilizzo di sistemi di dati economici disomogenei in base a cui decidere riguardanti imprese, progetti, e l’attività bancaria. Si tratta di sviluppare conoscenza per l’attuale società della conoscenza (o dell’informazione che dir si voglia) o post-industriale. Molti approcci oggi usati sono ancora quelli della società industriale dove era possibile parlare, ad esempio, di pianificazione, previsione e regolazione. Il congresso ha la finalità di esplorare casi e presentare approcci in questo contesto concettuale. Concludiamo osservando come questa impostazione sia omogenea e specificante degli approcci della Sistemica post-Bertalanffy considerati nel congresso precedente [1].  
 
4 
Incompleteness as the freedom of becoming 
 
Classical models of Systemics are intended to completely represent aspects of phenomena and processes, such as the motion of a pendulum or the operation of an amplifier. They concern the phenomena in their temporal and spatial completeness. The possible incompleteness in the modelling is assumed as having a provisional or practical nature as being still under study and because there is no theoretical reason why the modelling can not be complete. In principle, this is a matter of non-complex phenomena, to be considered using the concepts of the First Systemics [1,2,3,4]. Concepts and approaches regarding contexts and processes for which systems modelling can not be conceptually exhaustive have been already introduced in the literature [5]. We recall, first of all, fuzzy sets and fuzzy logic [6,7] for which, however, completeness has merely a probabilistic nature. It is matter of classical, computable probability. Probability is understood here as certain when computable and characterized by possible, significant extremes, such as minima or maxima, of the phenomenological becoming of any process, which is free to occur within such extremes as, for example, when computed using Bayes' theorem. For uncertain probability we intend here a non-computable probability, for instance, the non-predictability of processes of emergence which can not be fully modelled in an explicit and unambiguous way. There are phenomena, then, which must be modelled by eventually resorting to systems having multiple models depending on the aspects taken into consideration, such as electrical and mechanical, economic and sociological, biological or psychological ones, their coherence being a crucial systemic theme [8] regarding also their completeness or comprehensiveness as considered by the Usage of Dynamic Models (DYSAM) [9, pp. 64-75] and Logical Openness [10,11]. It is another case when the incompleteness is intrinsic, theoretically [12] relating the intrinsic impossibility of completely modelling because the incompleteness itself is a characteristic of the process under study. We consider here contexts and processes for which modelling through the use of systems is incomplete since related to only some properties, as well as those for which such modelling is theoretically incomplete as in the case of processes of emergence and for approaches considered by the Second Systemics [1]. An example of such incompleteness regards multiple systems, overlapping and variable over time, such as the case of collective behaviours which maintain coherence despite their continuous structural dynamics, possessing both correlations and scale invariance [13]. In this regard, we consider here the generic concept of quasi explicating such incompleteness. The concept of quasi is used in different disciplines as for quasi-crystals, quasi-particles, quasi-electric fields, and quasi-periodicity.  Thus one may consider the concept of quasi-systems [14]. In general, the concept of quasiness for systems concerns their continuous structural changes which are always meta-stable, waiting for events to collapse over other configurations and possible forms of stability, whose equivalence depends on the type of phenomenon under study. The interest in the concept of quasiness is not related to its meaning of rough approximation, but because it indicates an incompleteness which is structurally sufficient to accommodate processes of emergence and sustain coherence or generate new, equivalent or nonequivalent, levels. Quasiness also concerns modelling approaches such as network models, in this case called quasinetworks. A related concept is that of theoretical sloppiness referring to models in physics, biology and other disciplines [15]. The focus is on the transient, on multiplicity and coherence which guarantee consistency. Furthermore, we consider how theoretical incompleteness, incomplete modelling, i.e., not exhausted by using individual models, of processes and phenomena should be explored as a conceptual coexistence of 
5 
different approaches not so much with the purpose of exhausting but to conceptually represent the structural dynamics of becoming, already considered, for instance, through the use of uncertainty and complementarity principles in physics, without referring here to quantum physics. Examples include ecosystems, collective behaviours, social systems, and poly-pathologies. The availability of modern, effective theoretical approaches is crucial for the economy of today's society [16] in order to deal with contexts which owe their complexity, for example, to high virtuality, very fast changes and high levels of decentralization, having a distributed, reticular nature. One example of the themes considered here is that of rating issues, that is of evaluation and use of inhomogeneous economic data, according to which one can make decisions, concerning companies, projects, and banking. It is a matter of developing knowledge for the current knowledge, information or post-industrial society.  This conference aims to explore cases and present conceptual approaches within the novel context described above. We conclude by observing how this setting is conducive to the use of post-Bertalanffy Systemics as considered in the previous Conference [1]. _________________________________________ 
 1. Minati, G., Abram, M. and Pessa, E., (Eds.), (2016), Towards a Post-Bertalanffy Systemics. Springer, New York.  2. Ulivi, L., (Ed.), (2010), Strutture di Mondo. Il Pensiero Sistemico come Specchio di una Realtà Complessa (Volume I).  Il Mulino, Bologna, Italy. 3. Ulivi, L., (Ed.), (2013), Strutture di Mondo. Il Pensiero Sistemico come Specchio di una Realtà Complessa (Volume II). Il Mulino, Bologna, Italy. 4. Ulivi, L., (Ed.), (2015), Strutture di Mondo. Il Pensiero Sistemico come Specchio di una Realtà Complessa (Volume III). Il Mulino, Bologna, Italy. 5. Bailly, F. and Longo, G., (2011), Mathematics and the Natural Sciences. The Physical Singularity of Life. Imperial College Press, London. 6. Klir, G. J. and Yuan, B., (1995), Fuzzy sets and Fuzzy Logic: Theory and applications. Prentice Hall, Englewood Cliffs, NJ. 7. Zadeh, L. A. and Klir, G. J., (Ed.), Yuan, B., (Ed.), (1996), Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh. World Scientific, Singapore. 8. Minati, G. and Pessa, E., (Eds.), (2002), Emergence in Complex Cognitive, Social and Biological Systems. Kluwer, New York.  9. Minati, G. and Pessa, E., (2006), Collective Beings. Springer, New York. 10. Minati, G., Penna, M.P. and Pessa, E., (1998), Thermodynamic and Logical Openness in General Systems, Syst. Res. Behav. Sci., 15, pp. 131-145. 11. Licata, I., (2012), “Seeing by models: Vision as adaptive epistemology”. In (Minati, G., Abram, M., Pessa, E., Eds.), Methods, Models, Simulations and Approaches towards a General Theory of Change. World Scientific: Singapore, pp. 385-400. 12. Minati, G., (2016), Knowledge to Manage the Knowledge Society: The Concept of  Theoretical Incompleteness, Systems, 4(3), pp. 1-19.  13. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M., (2010), Scale-free correlations in starling flocks,  Proceeding of the National Academy of Sciences of the United States of America, 107, pp. 11865– 11870. 14. Minati, G. and Pessa, E., (in publication), From Collective Beings to Quasi-Systems. Springer, New York.  15. Transtrum, M., K., Machta, B. B., Brown, K. S., Daniels, B. C., Myers, C. R. and Sethna, J. P., (2015), Perspective: Sloppiness and Emergent Theories in Physics, Biology, and beyond, The Journal of Chemical Physics, 143(1), pp. 010901-1-13. 16. Cartwright, E., (2014), Behavioral Economics. Routledge, New York. 
I TEMI Anche per questa edizione il congresso vuole costituirsi come un laboratorio virtuale in cui le tematiche come quelle sopra delineate e i temi sotto indicati siano trattabili e declinabili trasversalmente e tuttavia presentati in ambiti disciplinari di origine, maggiormente frequentati per qualsiasi motivo. Si invita a presentare casi non solo leggibili secondo approcci del tipo delineato sopra ma ancora mancanti di soddisfacenti sistemazioni teoriche. 
6 
La strutturazione sotto proposta è quindi indicativa e da popolare di contributi che trovano affinità che gli autori dovranno comunque indicare esplicitamente. I contributi potranno essere di varia natura come applicativi, teorici, riguardanti modelli, simulazioni, sperimentali e filosofici. 
 
1. Il concetto di incompletezza e quasità nella scienza e in filosofia. 2. Modelli di incompletezza e di quasità. 3. Incompletezza e quasità nella Sistemica della complessità post-Bertalanffy. 4. Coerenza e incompletezza nel mondo aziendale. 
5. Emergenza, quasità e incompletezza. Mantenimento, crisi e degenerazione in fenomeni di emergenza 6. Incompletezza e quasità nei sistemi sociali. 7. Ontologie sistemiche. 
TOPICS This edition of the Conference also wants to establish itself as a virtual laboratory where issues such as those outlined above, and the topics listed below, are transversely treatable and declinable, however they be considered in the disciplinary areas of their origin. We invite all to present cases regarding not only approaches of the type outlined above, but also examples for which no satisfactory theoretical frameworks are yet available. The structure of themes proposed below is therefore indicative and to be populated with contributions having whatever affinities the authors will make explicit. Contributions may be of different kinds, including applications, theoretical approaches, or regarding models, simulations, experimental or philosophical aspects. 
 
1. The concept of incompleteness and quasiness in science and philosophy. 2. Models of incompleteness and quasiness. 3. Incompleteness and quasiness in postBertalanffy Systemics complexity. 4. Coherence and incompleteness in the corporate world. 
5. Emergence, quasiness and incompleteness. Maintaining, crises and degeneration in emergence phenomena. 6. Incompleteness and quasiness in social systems. 7. Systemic ontologies. 
 
 
COMITATO SCIENTIFICO / SCIENTIFIC COMMITTEE  M. Bertolaso Università Campus Bio-Medico di Roma L. Bich CNRS, University of Bordeaux L. Biggiero Università degli Studi dell'Aquila G. Bruno ISIA Roma Design S. Di Gregorio Università della Calabria, Arcavacata, Rende A. Giuliani Istituto Superiore di Sanità, Roma I. Licata ISEM, Institute for Scientific Methodology, Palermo G. Minati (chairman), Associazione Italiana per la Ricerca sui Sistemi M. P. Penna Università di Cagliari E. Pessa  (co-chairman), Università di Pavia R. Serra Università di Modena e Reggio Emilia A. Roli Università di Bologna L. Urbani Ulivi Università Cattolica, Milano G. Vitiello Università di Salerno 
 
 
7 
COMITATO D’ORGANIZZAZIONE / ORGANIZING COMMITTEE M. Abram (atti / proceedings) mario.abram@alice.it  G. Minati gianfranco.minati@airs.it G. Conti (responsabile amministrativo / Treasurer) conti.guido@tiscali.it 
ATTI / PROCEEDINGS Gli atti saranno pubblicati da Springer. / Proceedings will be published by Springer.  


QUOTA DI PARTECIPAZIONE IN DONAZIONE / CONFERENCE FEE AS DONATION Partecipazione regolare, pagamento completo (obbligatorio per i primi autori) Regular fee, full payment (required for first authors)  170 euro  Partecipazione alla conferenza / Conference attendance  Fascicolo degli abstracts / Book of abstracts  Prenotazione degli atti pubblicati successivamente /  Copy of the Proceedings when published  
 
Partecipazione come studente / Student fee  70 euro  Partecipazione alla conferenza / Conference attendance  Fascicolo degli abstracts / Book  of abstracts 
PAGAMENTO / PAYMENT 
 Assegni intestati a / Cheques made out to:  Associazione Italiana per la Ricerca sui Sistemi  Bonifico bancario / Bank transfer:  IBAN:  IT12F0623001628000043270836. 
CONTRIBUTI / CONTRIBUTIONS Scopo della conferenza è quello di promuovere la Sistemica in Italia. Il congresso dell’Associazione Italiana per le Ricerca sui Sistemi è aperto a contributi di autori Italiani.  Contributi da autori non Italiani sono solo per invito o per accettazione. The purpose of the conference is to support Systemics in Italy.  The Conference of the Italian Systems Society is open to contributions from Italian authors.  Contributions from non-Italian authors are only by invitation or by acceptance. 

LE DATE DEL CONGRESSO / CONFERENCE DATES AND DEADLINES 30/06/2017 data limite per il ricevimento dell’abstract 31/08/2017 data limite per il ricevimento dei lavori proposti 30/09/2017 notifica di accettazione dei lavori ed istruzioni per la presentazione del testo definitivo 31/10/2017 data limite per il ricevimento del pagamento completo e dei lavori definitivi e formattati (via posta elettronica) 
 
Jun. 30, 2017 deadline for receipt of abstracts Aug. 31, 2017 deadline for receipt of submitted papers Sept. 30, 2017 notification of acceptance to author and instructions for the final text  Oct. 31, 2017 deadline for receipt of full payment and the final formatted text (via Email) 
8 
LINGUA DEL CONGRESSO / LANGUAGE OF THE CONFERENCE 
 
La lingua ufficiale per le presentazioni orali al Congresso è l’Italiano anche se potranno esservi presentazioni in Inglese (non è previsto un servizio di traduzione simultanea). Italian is the official language for oral presentations at the Conference, although lectures in English are possible (translation services will not be available). 

ISTRUZIONI AGLI AUTORI / GUIDELINES FOR AUTHORS I lavori sottoposti, scritti esclusivamente in lingua Inglese, non potranno superare 3000 parole. Una pagina a parte conterrà titolo, nome, affiliazione, indirizzo del(degli) autore(i) e un abstract di non più di 800 caratteri per essere riportato nel fascicolo degli abstracts. I lavori accettati potranno essere presentati sia in formato TeX che in formato Word. Le istruzioni fornite da Springer saranno comunicate agli autori con abstract accettato e reperibili sul sito dell’AIRS. Submitted papers, written in English only, cannot exceed 3000 words. A separate sheet is required with title, name, affiliation, address of author(s) and an abstract of no more than 800 characters for distribution during the Conference in the Book of Abstracts. Accepted papers should be presented either in TeX or Word format. The instructions provided by Springer will be sent to authors with accepted abstracts accepted and available on the AIRS web site. 
 
Uno autore può presentare non più di tre lavori di cui non più di due come primo autore. La presentazione del lavoro al congresso da parte di almeno uno degli autori è richiesta per l’eventuale inserimento negli atti dopo accettazione. La valutazione dei lavori proposti (abstract con articolo) sarà effettuata dal Comitato Scientifico sulle base dei testi completi ricevuti entro il 31 Agosto 2017.  A contributor can be author of no more than three papers of which no more than two as first author.  To be included in the refereed Conference Proceedings presentations at the Conference must be made by at least one of the authors. Selection of communications (abstract and paper) will be made by the Scientific Committee on the basis of full papers sent before August 31, 2017. 
 
I contributi vanno inviati ad uno dei seguenti indirizzi: The addresses to which to send the contributions are: 
 
Associazione Italiana per la Ricerca sui Sistemi (AIRS) Gianfranco Minati Via Pellegrino Rossi, 42B, 20161 Milano MI, Italy 
 
Email gianfranco.minati@airs.it 
 
Università di Pavia Prof. Eliano Pessa Dipartimento di Scienze del Sistema Nervoso e del Comportamento Università di Pavia, Piazza Botta, 11, 27100 Pavia PV, Italy 
 
Email eliano.pessa@unipv.it
Byadmin

Systems thinking: seeing the forest as well as the trees.

When dealing with business issues and problems, we often adopt an analytical approach – breaking down interesting situations into their elements for close and more detailed examination. We are so familiar with this approach that we don’t think about the underpinning philosophy of analysis – Logical Empiricism.  Education has prepared us for a semi-scientific approach to problem-solving, which takes it for granted that an inquirer should be independent and adopt an objective stance. We seek for explanations by gathering data and sifting through it to uncover causal relationships. Of course, when business problems arise, we also need interpretive approaches where people closely involved in a situation use their experience and contextual understandings to give depth and richness to inquiries – not pretending to be objective.

Larger organizations often have teams of dedicated, professional strategists who scan the organizational environment for relevant data. In smaller enterprises, it is the proprietors themselves who face all the challenges of management. Perceptions that businesses can be guided through a process of rational planning are persistent (see, e.g. Beveridge, 2002). However, the concept of rational business planning has been widely criticised for some time. An organization of only medium size would require a bulky and constant supply of data for analysis, processed to provide a continuous stream of high calibre advice. Time for reflection upon that advice, to formulate choices and to make judgments would also be needed. Thus, by the time a rational plan could be devised, the business environment would have moved on. This endless game of ‘catch up’ that would render planning processes unmanageable in practice. Lindblom suggested that the best we can do in these circumstances is to ‘muddle through’. In fact, rational planning very often gives way to a more interpretive approach, seeking to ‘satisfice’ rather than optimise business outcomes. Even with much-vaunted ‘Big Data’, these difficulties are not reduced – see Bernard Marr’s commentary ‘Why Big Data means nothing without Little Data’.

Of course, this does not mean that attempts at planning in organizations are futile. Walsham (1993, p.143) suggested the reality of strategy formation to be ‘a dynamic socio-political process within multi-level contexts’. The term ‘satisficing’ was coined by Simon, working with game theory. Managers cannot attain optimum performance, maximising profits at all times, for the reasons suggested. However, they can maintain a state which is regarded by interested stakeholders as satisfactory – keeping the business on an even keel. This process is described by Simon as bounded rationality. Sir Geoffrey Vickers put forward the idea of ‘relationship-maintaining’ as the primary task in steering organizations. A manager’s function is not to define goals and objectives, but to gain an understanding of current states, together with views of the way things need to be (desirable future states) in order to maintain a business in equilibrium with its environment. For Vickers, it is the continuing process of learning about the organization in its environment, through which goals and objectives are established, that is most valuable. It leads to on-going improvements in appreciation of activities and environment over time.

Whether managers espouse a view that organizational activities can be planned, or recognise that they are engaged in an on-going attempt to maintain equilibrium with business environments, what is clear is that this is an holistic exercise requiring involvement from every sphere of organizational life. While firms may be structured around distinct, functional activities or in multi-skilled teams, management must take into account all contributions as part of the on-going learning process.

Stafford Beer set out the boundaries of a problem for those of us educated in Western traditions:

We are the inheritors of categorized knowledge; therefore we inherit also a world view that consists of parts strung together, rather than of wholes regarded through different sets of filters. Historically, synthesis seems to have been too much for the human mind – where practical affairs were concerned. … The modern world of science and technology is bred from Aristotle and Aquinas by analysis. The categorization that took hold of medieval scholasticism has really lasted it out” (Beer, 1973 p.63)

In other words, we cannot see the wood for the trees! We have been disqualified by our education.

Through systemic thinking, on the other hand, we may be empowered to see the world as ‘wholes regarded through different sets of filters’ as Beer envisaged. Systems thinking is characterised by certain concepts that are relevant in, and transcend the boundaries of, many specialised fields (e.g. biology, economics or geography). These concepts include emergence, hierarchy, communication and control.

The term ‘system’ is a label we use to refer to a mental construct by which a ‘whole’ is perceived by an observer to emerge when certain components come together in an organized and purposive way within a certain boundary. It is important to recognise that a perceived system does not model any reality – it is a construct that allows us to examine and argue about aspects of the world we perceive around us (Checkland, 1985 p.765). It follows that systems ‘exist’ because we choose to see them as such.

Although many of the phenomena we refer to by using this term appear to be part of the physical world, e.g. an engineered artefact such as a heating system, even these owe their holistic qualities to conceptions in the minds of designers and engineers and were brought about by application of creative thinking. The systemic qualities of a machine are designed into it through reflection upon mental models of possible interactions between components that could lead to (different) desired outcomes.

In a social context, it is people who interact, or reflect on interactions, who perceive systemic qualities to emerge. We can see therefore that any system’s ‘existence’ is essentially a description of systemic qualities perceived by an observer – whether this person is a creator or user of that system, or is reflecting experiences more generally. Emergent properties of the interactions inherent in a system appear to a particular observer because this is what makes it a relevant construct to him or her. This involves defining a boundary between the system and the environment within which it acts, i.e. choosing to see a distinction between what is regarded as part of the system and what is not. Boundaries are a matter of choice, and it is important that we ask ourselves from what particular stance a system appears to have the characteristics in question? Clearly, any observation is made from the point of view of an individual who observes. Every person has a unique perspective (or set of perspectives) of her or his own, shaped by an entire life experience – what Vickers refers to as appreciative settings. Viewpoints vary depending upon the role an individual is playing at a particular time, and the values that appear relevant to that particular context. This is one reason why, for instance, the descritions of events by different witnesses often seem to differ quite widely.

An individual may find it relevant to develop a mental model of a system, set in its environment, as an integrated, purposeful whole. However, particular interests may render some part(s) of that whole interesting for a deeper examination. Looked at in this way, that part can be perceived as a coherent and purposeful whole, i.e. what was earlier perceived as a sub-system now becomes the relevant system in its own right. A hierarchy of perceived systems appears, each interacting within a wider system of which it forms a component part.

Adopting a systemic view changes perceptions about the role of management in an organization, as interactions are highlighted rather than functions. Viewed through this lens, the concept of hierarchy relates not to linear relations of authority and responsibility but to interactions between purposive and integrated ‘wholes’. Seddon (2008, p.70), discussing design of systems to deliver public services, emphasises the importance of what he terms ‘counter-intuitive’ thinking. He points out the limitation of traditional ‘command-and-control thinking’ in service organizations since it focuses attention on  functions, targets and budgets in such a way as to fragment the mental models about organizational life held by the participants.

The environment within which living individuals and organizations interact is in a constant state of flux. Change is experienced, not as exceptional but as normal. As ancient philosopher Heraclitus pointed out, a man cannot step twice into the same river, since both the water and the man will be different as time passes. People in organizations need to make decisions in order to maintain relationships with wider systems and environment (i.e. non-change is not an option). Management writer Charles Handy referred  to a problem some organizations have experienced as ‘boiled frog syndrome’ – a frog dropped into hot water immediate jumps out, but a frog placed in water that is slowly heated will fall asleep and eventually die. So, failure to notice and respond to changes in its environment will be destructive for any system. Problem definition and re-definition will be needed constantly if an organization is to perpetuate itself and achieve relative stability within its environmental constraints. At the same time, a constant re-evaluation of problem solutions is required and this leads to a continual demand for ‘new’ ideas.

Pidd (1996), in his work ‘Tools for Thinking’ draws a distinction between different types of dilemma facing managers in steering their organizations. Viewed at the highest level, there appears what Ackoff, describes as a mess – an ambiguous set of circumstances where many different interpretations of what is going on are possible and there may be no agreement on the nature of problems or constructive ways forward.  Pidd contrasts a mess with a puzzle, i.e. a set of circumstances where issues are clear, options are evident and necessary action (i.e. solution) becomes readily apparent. Between these two extremes, decisions are required to address problems, i.e. those challenges where issues are not entirely clear, options need to be developed and it is not at all obvious what the best solutions is among a range of choices. Pidd’s advice to managers is:

One of the greatest mistakes that can be made when dealing with a mess is to carve off part of the mess, treat it as a problem and then solve it as a puzzle, ignoring the links with other aspects of the mess” (Pidd, 1996, p.70).

It is clear therefore that managers face challenges that require them to focus on issues but not lose sight of links to other aspects of a messy situation. Viewing the situation using a systems lens supports a focus on interactions. A view of systemic hierarchy, rather than analytical breaking-down, supports problem structuring and decision-making. However, any systemic construct can only be created from the point of view of a particular observer. Our ability to ‘step into one another’s shoes’ in particular contexts is very limited. This supports Seddon’s view that effective management of organizational systems depends not upon chains of command but on effective integration of decision-making and work. A focus upon links between purposive (sub-) systems also serves to highlight wasteful and duplicated efforts that are not helping to maintain equilibrium between the organization and its environment.

When considering the world from a Systemic perspective, we are essentially focusing on transformations. When coal is burned in a power station, energy emerges that can be used in many different applications, from central street lighting to electric toothbrushes. When we consider complex systems such as organizations, these transformations require more careful consideration. Emergence is a key feature of Systems thinking, i.e. when interconnected elements are organized together in a certain way, it is possible to view the result as an emergent whole that represents more than the sum of individual contributions from its parts. When many individual actors are present to interact in a purposeful way, with varying skills and with resources made available to them, an organization emerges. Such a view provides a powerful vehicle for reflection upon organizational behaviour

Environments within which living individuals and organizations interact are in a constant state of flux. Change is experienced, not as exceptional but as normal. In response people and organizations need to make decisions, i.e. non-change is not an option. Problem definition and re-definition will be needed constantly if an organization is to survive and achieve relative stability. At the same time, ‘muddling through’ requires a constant re-evaluation of messy, problem situations – the solutions that are effective today may not be useful tomorrow. This leads to a continual demand for ‘new’ ideas, i.e. to find new solutions to problems or possibly to create new, more interesting problems to which ‘solutions’ can be sought. However, many of us have experienced organizational change projects as painful and of dubious success. Management literature offers many prescriptive models for organizational change (see e.g. Kotter, 2002 8-step model). However,  Senge, et al (1999) comment on this by suggesting that understanding success factors in sustaining change requires us to adopt the same thinking processes as biologists (p.6). They go on to suggest:

Sustaining any profound change process requires a fundamental shift in thinking. We need to understand the nature of growth processes (forces that aid our efforts) and how to catalyse them. But we also need to understand the forces and challenges that impede progress, and to develop workable strategies for dealing with these challenges. We need to appreciate ‘the dance of change,’ the inevitable interplay between growth processes and limiting processes” (Senge, et al, 1999, p.10)

In other words, we need Systems Thinking.

References

Ackoff, R. (1974). Redesigning the Future: A Systems Approach to Societal Planning. Wiley

Beveridge, C. (2002). NCC Guidelines for IT Management, No.273: Aligning IT with Business Strategy. National Computing Centre

Checkland, P.B. (1985). From optimizing to learning a development of systems thinking for the 1990s, Journal of Operational Research Society. 9, 757-767.

Handy, C. (1991). The Age of Unreason. Harvard Business Press

Kotter, J. P. (2002). The Heart of Change: real life stories of how people change their organizations. Harvard Business Press

Lindblom, C (1959) ‘The Science of Muddling Through’, Public Administration Review, 19: 79-88.

Marr, B. (2016). Why ‘Big Data’ Means Nothing Without ‘Little Data’, accessed 23 July 2016, http://www.forbes.com/sites/bernardmarr/2016/06/23/why-big-data-means-nothing-without-little-data/#45ced03019c0

Pidd, M. (1996). Tools for Thinking. J. Wiley & Sons

Seddon, J. (2008). Systems Thinking in the Public Sector: the failure of the reform regime and a manifesto for a better way. Triarchy Press

Senge, P., Kleiner, A., Roberts, C., Ross, R., Roth, G and Smith, B. (1999). The Dance of Change: the challenges of sustaining momentum in learning organizations. Nicholas Brealey Publishing

Simon, H. (1991). Bounded Rationality and Organizational Learning, Organization Science 2(1): 125-134.

Vickers, G (1970), Freedom in a Rocking Boat, Allen Lane

Walsham, G (1993), Interpreting Information Systems in Organizations, Wiley

Byadmin

Invitation to WOSC 2017, the 17th Congress of World Organisation of Systems and Cybernetics

Dear Friends and Colleagues We are happy to invite you to join us at WOSC 17th Congress.

ROME 25-27 JANUARY 2017 Read More

Byadmin

Systems Practice for Managing Complexity

SPMC was established as a network in 2001 with the aim to share knowledge of Systems ideas to a wide audience. Today, SPMC Associates are taking this tradition forward, to provide Systems capability workshops for business and the wider community. We can help individuals and organizations to address complex problems and issues in a variety of domains. SPMC workshops may be designed to tackle the ‘here and now’ challenges faced by managers (e.g. business relocation, change management); or issues of more general concern to a wide audience (e.g. sustainability), addressed in workshop mode. This usually involves presentation of a ‘typical’ casestudy, one aspect of which is addressed by the delegates using straightforward but powerful Systems tools. We also offer training in Systems tools and techniques for organizations, which may be tailored to specific needs or used as a vehicle for CPD.